
NOTES ON COMPUTATIONAL HOMOLOGY
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Abstract. We work out some details of algorithms for computing homology, persistent
or otherwise.

1. Persistent homology

First, we study the reduction algorithm for persistent homology described in Edelsbrun-
ner and Harer [?, pp. 152 – 156] (“E & H”). Specifically, we analyze the algorithm described
by the pseudocode on p. 153 E & H. We prove the claim made on p. 155 ibid that if i < j,
column i in the reduced matrix R is all 0, and the “lowest 1” in column j is in row i, then
the homology class “born” in column i “dies” in column j. Moreover, the space of cycles
is spanned by the chains corresponding to the columns in the V matrix corresponding to
the 0 columns in the R matrix.

First, of all, what do E & H mean by “lowest 1” in a column? (They don’t seem to
explain that.) Apparently, they mean the largest index in the column that’s 1 (i.e, not 0;
we’re working over Z/2). Such a 1 will be in the lowest position if the matrix is written out
in the usual way. If ` is a column index, let low(`) be the index of the lowest 1 in column
` of R. Thus, low(`) is the maximal index of the non-zero elements of column ` in R.

Let K be the complex under consideration. The simplices in the complex are partially
ordered by a function f : K → R (p. 150, E & H). This is important in the ”Elder Rule”
(E & H, p. 151). However, this ordering is not refined enough. For example, suppose two
classes are “born” with the addition of simplices σ and τ and f(σ) = f(τ). But suppose
with the addition of some other simplex ρ, the two classes later merge. Then one class dies
but the other persists. Which one dies? Which one persists? To avoid such difficulties we
need a more refined way to measure “time”. Suppose the simplices in the complex K are
ordered in a fashion that is “compatible” with f (p. 152 E & H). Write σ1 < . . . < σN .
(There might also be a “simplex” in dimension -1 in order to capture reduced homology
in dimension 0.) Define a new function f̃ that simply assigns to the jth simplex in the
ordering the number j. Then for any pair of simplices in K, one is more ”elder” than the
other w.r.t. f̃ . In particular, we may identify chains with the set of 0-1 vectors of length
N .

In a slight extension of the algorithm, we consider homology relative to a complex
that belongs to all the subcomplexes corresponding to the values of the function This
corresponds to removing some simplices for K. In terms of matrices, this means removing
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some rows and columns. Note: That the ith row is removed if and only if the ith column is
removed. In particular, an identity matrix is transformed to another identity matrix, just
of a smaller dimension. (Section VII.3 E & H, “Extended Persistence”, discusses relative
homology, but apparently deals with different issues to the ones I care about.)

Write

R = ∂ · V,

where ∂ is the matrix of the boundary operator and “·” denotes matrix multiplication.
Thus, the kth column in R is the image under ∂ of the the kth column in V . Let σi denote
the simplex whose boundary is given by the ith column of ∂. We will at times refer to the
column index as “time”.

As observed in E & H, all three matrices, R, ∂, and V are all 0 below the main diagonal.
In fact, the diagonals of ∂ and R are both 0 as well. This is because the columns of ∂ are
“compatibly ordered” (p. 152 E & H). So all faces of a simplex σ strictly precede it in the
ordering.

On the other hand, the main diagonal of V is all 1’s. To see this imagine running the
algorithm initializing V to the identity matrix. Suppose that by the jth passage through
the loop in the pseudo code on p. 153 E & H the diagonal of V still consists entirely of 1’s.
Nothing happens in the algorithm that will cancel a 1 in the diagonal of V . Specifically, if
j0 < j and column j0 is added to column j, then j0 < j means that only entries in the jth

above the diagonal entry (j, j) can be changed. Hence, by induction, the main diagonal of
V consists entirely of 1’s. Since all entries of V below the main diagonal are 0, if follows
that the column space of V consists of all 0-1 vectors of length N . I.e., any chain can be
represented as a sum of columns of V .

If the ith column in R is all 0’s then obviously, the cycle represented by the ith column
of V is a cycle, call it z. What does it mean to say that z represents a homology class
that is “born” at column i? It means that it’s not homologous to a cycle that appears in
an earlier column. More precisely, for the cycle represented by the ith column to not be
born at “time” f̃(σi) := i, there must be some chain, c, involving only columns up to i,
inclusive, s.t. ∂c+ z is a cycle composed of columns strictly before the ith. But V has 1’s
all along its diagonal. In particular, σi is a term in z. Thus, σi must appear in ∂c. But
that means, since the diagonal of ∂ is 0, the chain c involves at least one column strictly
after i. This proves that z represents a class “born” at i.

We prove that the columns of V corresponding to columns of R consisting only of 0’s
span the space of cycles. Clearly, every such column is a cycle. Suppose z is a cycle. A
observed above, we may think of z as a 0-1 vector of length N and represented as a sum
of columns of V . Suppose that z is the sum of columns j1 < · · · < jk of V and suppose
that for some i = 1, . . . , k the jthi column of R that is not all 0. If the jthi column of R is
not all 0, then that column has a lowest 1. Assume that among all such columns, column
ji has the lowest lowest 1. (Thus, low(jν) with ν = i is maximal among all the columns,
jν , in the sum z.) From the specification of the algorithm there there will be exactly one
such column. Then in ∂z, there’s nothing to cancel the lowest 1 in column ji of R, so the
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boundary cannot be 0, contradiction. This proves that the columns of V corresponding to
columns of R consisting only of 0’s span the space of cycles.

Suppose z :=
∑k

i=1 σji is a (reduced) cycle. We show that after reduction, column jk is
all 0’s. From what we just proved there are columns i1, . . . , im of V s.t. if zi1 , . . . , zik are
the, say, d-dimensional chains represented by columns i1 < . . . < im of the matrix V then
z =

∑m
`=1 zi` and each column i1 < . . . < im of the matrix R is 0. Since the main diagonal

of V is all 1’s and there are only 0’s below the main diagonal of V , we must have im = jk.
Finally, we show that if the jth column R is non-zero and its lowest 1 is in row i (i.e.,

low(j) = i), then the ith column of R must be all 0 and the homology class born at i must
perish at j. Let y be the chain in column j and x be the chain in column i of V . Write

∂y =
i∑

p=1

ηpσp and x =
i∑

`=1

ε`σ`,

where the ηp’s and ε`’s are all 0 or 1, of course. Since V has 1’s all along its main diagonal,
εi = 1. Since i = low(j) we also have ηi = 1. Now

0 = ∂2y = ∂(∂y).

Therefore, from what we just proved, the ith column of R, which is the same as ∂x, is all
0. I.e., x is a cycle. Let z = x− ∂y. Then the σi’s in x and ∂y cancel so

z =
i−1∑
t=1

ζtσt and ∂z = ∂x− ∂2y = 0.

I.e., x = ∂y + z, where z is a cycle that comes from a “time” before i. Thus, y is “dead”
at “time” j. This means that at time j the cycle x is homologous to a cycle that was born
no later than x was. By the “Elder Rule” (E & H, p. 151) this means that x is ”dead” at
time j. (This seems a little different from how E & H define the ”Elder Rule”.)

But couldn’t x “die” before j? In that case there would be a chain w carried by
σ1, . . . , σj−1 s.t. the cycle x − ∂w is carried by σ1, . . . , σi−1. But then we must have
low(w) = i, contradicting the fact that after the reduction the first column whose lowest 1
is in row i is column j.

2. “Excision trick”

Let K be a simplicial complex and let L be a subcomplex of K. We apply excision
(Munkres [?, Theorem 9.1, p. 50]) to the pair (K,L). Define

A := {σ ∈ L : σ is not a face of any τ ∈ K \ L}.
Let U :=

⋃
σ∈A Intσ.

Claim: U is the interior, |L|◦, of the polytope |L| relative to |K|. Suppose x ∈ |L| \ U .
There exists ζ ∈ L s.t. x ∈ Int ζ. Then ζ is the face of some τ ∈ K \ L. Thus, every
neighborhood of x will intersect Int τ . This means every neighborhood of x will intersect
τ \ |L|. It follows that x /∈ |L|◦. Therefore, |L|◦ ⊂ U . Thus, it suffices to show that U is
open in |K|.
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Let τ ∈ K. First, suppose τ ∈ A and let ζ be a face of τ , e.g., ζ = τ . If ζ ∈ A, then
Int ζ ⊂ U . If ζ /∈ A, then Int ζ ∩ U = ∅, for otherwise Int ζ would intersect Intσ for some
σ ∈ A. But ζ 6= σ so (Int ζ) ∩ (Intσ) = ∅. The fact that ζ /∈ A means that ζ is the face of
some ω ∈ K \ L. Thus, any face of ζ is the face of ω ∈ K \ L. Hence, no face of ζ is in A.
Therefore, if ζ /∈ A then ζ ∩ U = ∅. Thus, since τ =

⋃
ζ is a face of τ Int ζ,

τ ∩ U =

 ⋃
ζ is a face of τ and ζ∈A

(Int ζ) ∩ U

 ∪
 ⋃
ζ is a face of τ and ζ /∈A

(Int ζ) ∩ U


=

⋃
ζ is a face of τ and ζ∈A

Int ζ

⊂ τ \

 ⋃
ζ is a face of τ and ζ /∈A

Int ζ


⊂ τ \

 ⋃
ζ is a face of τ and ζ /∈A

ζ

 .

Hence, τ ∩ U is open in τ .
Next, suppose τ ∈ K \ A and let σ ∈ A. Then σ 6= τ . Let ζ := τ ∩ σ so ζ is a face of τ

and σ. If ζ ∩ (Intσ) 6= ∅ then ζ = σ, so σ is a face of τ , contradicting the definition of A.
Therefore, ζ ∩ (Intσ) = ∅. Hence, τ ∩ (Intσ) = ∅ and

τ ∩ U =
⋃
σ∈A

τ ∩ (Intσ) = ∅.

So once again τ ∩ U is open in τ . Thus, by the definition of the topology of |K| (Munkres
[?, p. 8]), U is open in |L|. This completes the proof of the claim that U = |L|◦.

Claim: |K| \ U is the polytope of the complex, K ′, consisting of all simplices in K \ L
plus all faces of same. I.e., K ′ = K \A ⊃ K \L. Clearly, K ′ is a subcomplex of K. Suppose
σ ∈ K ′, i.e., σ is the face of a simplex in K \L. Suppose x ∈ σ∩U . Then there exists τ ∈ A
s.t. x ∈ Int τ . This means that τ is a face of σ, which means that τ is a face of a simplex
in K \ L. But τ ∈ A, a contradiction. Thus, |K ′| ⊂ |K| \ U . Conversely, let x ∈ |K| \ U .
Then for every σ ∈ A, we have x /∈ Intσ. But there exists τ ∈ K s.t. x ∈ Int τ . Hence,
τ /∈ A, which means that τ is a face of some simplex in K \ L. I.e., τ ∈ K ′. Therefore
|K| \ U ⊂ |K ′|, as claimed.

Let L′ := L ∩K ′, so L′ is a subcomplex of L and |L′| = |L| \ U . Therefore, by excision
(Munkres [?, Theorem 9.1, p. 50]), the inclusion map j′ : (K ′, L′) ↪→ (K,L) induces an
isomorphism in homology. Let p = 0, 1, . . . and define f ′ : Cp(K,L) → Cp(K ′, L′) as
follows. Let c+ Cp(L) ∈ Cp(K,L). We may write uniquely,

c =
m∑
i=1

σi,
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where σ1, . . . , σm ∈ K \L. Then σ1, . . . , σm /∈ A. I.e., σ1, . . . , σm ∈ K ′. Hence the following
defines a homomorphism f ′ : Cp(K,L)→ Cp(K ′, L′),

f ′
[
c+ Cp(L)

]
= c+ Cp(L′) ∈ Cp(K ′)/Cp(L′).

Next, we show that f ′ is a chain map. Let σ ∈ K be a p-simplex. Let ζ be a (p−1)-face
of σ. If σ ∈ K \ L, then ζ /∈ A, so ζ ∈ K ′ and

f ′
[
∂(σ + Cp(L))

]
= ∂σ + Cp(L′) = ∂f ′(σ).

Observe f ′ = (j′#)−1, where j′# : Cp(K ′, L′)→ Cp(K,L) is the induced homomorphism.
Therefore, f ′ induces isomorphisms in homology.

Now suppose that L is acyclic. Let h : K → (K,L) and h′ : K ′ → (K ′, L′). Then the
following commutes.

(1)

H̃p(L′) −−−−→ H̃p(K ′)
h′∗−−−−→ Hp(K ′, L′) −−−−→ H̃p−1(L′)y y y∼= y

0 H̃p(L) −−−−→ H̃p(K) h∗−−−−→∼= Hp(K,L) −−−−→ H̃p−1(L) 0.

Thus, we can calculate H̃∗(K) by calculating H∗(K ′, L′) and C∗(K ′)/C∗(L′) will be of
lower dimension, sometimes much lower dimension, than C∗(K).

3. “Wave” algorithm for computing persistent relative homology

Suppose we have pairs (K1, L1) ⊂ · · · ⊂ (Kn, Ln). In this section we assume that
the complexes L` are acyclic. Persistence makes sense for the relative homology groups
H∗(Kr, Lr). In this section, we develop an algorithm for computing persistent relative
homology (Section VII.3, E & H, “Extended Persistence”, discusses relative homology, but
apparently deals with different issues to the ones I care about.)

To begin with take n = 2 and let j : (K1, L1) ↪→ (K2, L2) be inclusion. Let (K ′ν , L
′
ν) be

the “excised” version of (Kν , Lν) as described in section ?? (ν = 1, 2). Let j′1 : (K ′1, L
′
1) ↪→

(K1, L1) be inclusion and let f ′2∗ : H∗(K2, L2) → H∗(K ′2, L
′
2) be an isomorphism as in

section ??.
Let p = 1, 2, . . .. On the homology level, we have the composition,

f ′2∗ ◦ j∗ ◦ j′1∗ : Hp(K ′1, L
′
1)→ Hp(K ′2, L

′
2).

What does this look like on the chain level? Let σ ∈ K ′1 \L′1. Then j′1#(σ+Cp(L′1)) = σ+
Cp(L1) and j#(σ+Cp(L1)) = σ+Cp(L2). If σ ∈ L2 then σ+Cp(L2) = 0 ∈ Cp(K2)/Cp(L2)
so f ′2

(
σ+Cp(L2)

)
= 0. If σ ∈ K2 \L2, then f ′2(σ+Cp(L2)) = σ+Cp(L′2). If σ /∈ K ′2, then

σ ∈ L2, so f ′2
(
σ + Cp(L2)

)
= 0. Thus,

f ′2 ◦ j# ◦ j′1#

(
σ + Cp(L′1))

)
=

{
0, if σ /∈ K ′2,
σ + Cp(L′2), otherwise.
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We conclude that f ′2∗ ◦ j∗ ◦ j′1∗ can be computed without having to consider the bigger
complexes K1, L1,K2, L2.

Let hν : Kν → (Kν , Lν) be inclusion. Then, as noted in section ??, since Lν is acyclic,
hν induces isomorphisms of homology. Let k : K1 → K2 also be inclusion. Note that the
following commutes

(2)

Hp(K ′1, L
′
1)

f ′2∗◦j∗◦j1∗
′

−−−−−−−→ Hp(K ′2, L
′
2)

j′1∗

y∼= ∼=
yj′2∗=(f ′2∗)

−1

Hp(K1, L1)
j∗′−−−−→ Hp(K2, L2)

h1∗

x∼= ∼=
xh2∗

H̃p(K1) k∗−−−−→ H̃p(K2).

It follows that α ∈ H̃p(K1) persists, i.e., k∗(α) 6= 0, if and only if (j′1∗)
−1 ◦ h1∗(α) persists.

I.e, one can check persistence working in the smaller complexes (K ′ν , L
′
ν).

As another wrinkle, suppose K̄i is a subcomplex of Ki s.t. inclusion, j̄i, induces an
isomorphism in homology. Suppose further that K̄1 ⊂ K̄2 and let k̄ : K̄1 ↪→ K̄2 be
inclusion. Then the following commutes.

H̃p(K̄1) k̄∗−−−−→ H̃p(K̄2)

j̄1∗

x∼= ∼=
xj̄2∗

H̃p(K1) k∗−−−−→ H̃p(K2).

Then a class x ∈ H̃p(K1) “persists” to H̃p(K2) (i.e., k∗(x) 6= 0) if and only if j̄1∗(x) ∈
H̃p(K̄1) “persists” to H̃p(K̄2). Therefore, we can study persistence in K1,K2 by studying
it in K̄1, K̄2.

To handle more than two spaces · · · ↪→ Kν ↪→ Kν+1 ↪→ · · · just concatenate the preced-
ing.

4. Left to right reduction

We describe an algorithm that might be useful for actually computing homology gener-
ators. Let M be an m × n matrix with field entries. (Call the field F .) For j = 1, . . . , n,
let Mj denote the jth column of M . For i = 1, . . . ,m, let M [i, j] be the entry in the ith

row and jth column. Let M0 := M . Do the following for x = 1, . . . , n − 1. If Mx−1
x = 0

(Mx−1
x is the xth column of Mx−1), then return Mx−1. Suppose Mx−1

x 6= 0. Initialize
Mx := Mx−1. Let k = i = 1, . . . ,m be the smallest index s.t. Mx−1[k, x] 6= 0. Do the
following for j = x + 1, . . . , n. If Mx−1[i, j] = 0, then Mx

j = Mx−1
j is unchanged. If

Mx−1[i, j] 6= 0, Let

(3) Mx
j := Mx−1

j −
(
Mx−1[i, j]/Mx−1[i, x]

)
Mx−1
x .
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In this case Mx[i, j] = 0. The final output is a matrix Mn−1.
Observe the following. Suppose j = 1, . . . , n and let k = i = 1, . . . ,m be the smallest

index s.t. Mx[k, j] 6= 0. Then if i′ = 1, . . . , i− 1, we will also have Mx+1[i′, j] = 0.
Let N = Mn−1 be the matrix that results from going through this algorithm (so x goes

from 1 to n−1). Let j = 2, . . . , n. We prove that Nj = 0 if and only if Mj lies in the span of
M1, . . . ,Mj−1. Clearly, if Nj = 0 (e.g., Mj = 0), then Mj lies in the span of M1, . . . ,Mj−1.

So suppose Mj lies in the span of M1, . . . ,Mj−1. We show that Nj = 0. We proceed by
induction on n. If j = n = 1, then Nj = Mj and M1, . . . ,Mj−1 spans 0, so the statement
is obvious. Don’t like that? Okay, try j = n = 2. If M2 lies in the span of M1, then
M2 = αM1 for some α ∈ F . Whether α = 0 or not, M2 will be zeroed out after the first
pass of the algorithm.

Let ν = 2, 3, . . . and suppose the statement is true for any j = 2, . . . , n providing n ≤ ν.
Let n = ν + 1 and let k = i1 be the smallest k s.t. M [k, t] 6= 0 for some t = 1, . . . , j − 1.
(So if t = 1, . . . , j − 1 and k = 1, . . . , i1 − 1, then M [k, t] = 0.) Let k = x = 1, . . . , j − 1
be the smallest k s.t M [i1, k] 6= 0. Thus, (i1, x) is the lexicographically smallest pair of
indices to the left of the jth column s.t. the corresponding element of M is non-zero. Then
Mx[i1, x] 6= 0. The remainder of the ith row of Mx is 0. In particular, Mx[i1, j] = 0.
Remember that we are assuming that Mj lies in the span of M1, . . . ,Mj−1. Hence, Mx

j is
spanned by Mx

t for t = 1, . . . , x − 1, x + 1, . . . , j − 1. Consider the matrix obtained from
Mx but with column x removed. Apply the induction hypothesis. Then Nj = 0 as desired.

Conversely, suppose Nj = 0. Then from the way the algorithm works we see that some
linear combination of M1, . . . ,Mj is 0. From (??), we see that the coefficient of Mj in that
linear combination is 1. Therefore, Mj lies in the span of M1, . . . ,Mj−1.


