
BACKGROUND ON THE CONCURRENCE TOPOLOGY METHOD
AND SOFTWARE

STEVEN P. ELLIS

1. Introduction

This document is part of the supplementary material for the paper “Describing high-
order statistical dependence using ‘Concurrence Topology’, with application to functional
MRI brain data” by Steven P. Ellis and Arno Klein [EK13]. Here we give an overview
of how the concurrence topology software works. A bit of theory is also included. For
instructions on how to use the software see the file “SoftwareHowTo.txt”. For some related
mathematical theory see the file “ConcurrenceTopol Notes.pdf”. Both these files are found
in the directory “ConcurrenceTopology software” in the supplemental material.

2. The filtered Curto-Itskov complex

2.1. Simplicial complexes. Concurrence topology is designed for binary data1. Write
each observation as a vector of 0’s and 1’s. A “concurrence” is a group of variables all
“1” in the same observation. The basic idea is to represent a list of concurrences by a
“simplicial” complex (Munkres [Mun84]). Simplicial complexes can be defined abstractly,
but as an aid to intuition we consider geometric complexes. A simplicial complex is a
collection of simplices that fit together nicely. Simplices are shapes. There are simplices of
any nonnegative dimension. A 0-dimensional simplex (“0-simplex”) is just an individual
point. A 1-dimensional simplex (“1-simplex”) is a closed line segment. The endpoints of a
line segment are the “vertices” of the 1-simplex. We regard vertices as 0-simplices, and we
say that the 1-simplex is “spanned” by the two vertices. A 2-simplex is a filled-in triangle.
It is “spanned” by its three vertices. A 3-simplex is a tetrahedron, i.e., a solid pyramid
with a triangular base. It is spanned by its four vertices (corners). Etc. A simplex is
specified by listing its vertices. The sides, edges, and vertices of a 3-simplex are generically
referred to as the “faces” of the simplex. A simplex is considered a face of itself. If τ is a
face of a simplex σ, but τ 6= σ then we say that τ is a “proper face” of σ.

Date: 3/25/’12.
1Binary variables can be coded ”0”or ”1”. The process of translating the data into shapes is sensitive to

the coding. This creates an issue for nominal data, e.g., ”male-female”. If there are only one or two nominal
variables in the data set, it might be reasonable to analyze the data with all possible codings. Otherwise, a
blanket rule for coding of nominal variables is needed. An example of such a rule is the following. Suppose,
as is typical, that for no nominal variable is it the case that the numbers of observations in the two nominal
categories are exactly equal. In that case, for each nominal variable code the smaller of the two categories
as ”1” and the other as ”0”.

1

2 STEVEN P. ELLIS

This terminology extends to simplices of all dimensions. A d-dimensional simplex will
have d + 1 vertices. The number of p-dimensional faces of a d-simplex is

(
d+1
p

)
(Thus, a

d-simplex has 2d+1−1 faces altogether.) The number of faces can thus be quite large. This
is a manifestation of a “combinatorial explosion”. This fact has important consequences
when it comes to computing the homology groups of simplicial complexes (sections 5 and
7).

A collection of vertices in “general position” span a unique simplex. d+ 1 points are in
general position if they do not lie in a plane of dimension d− 1 or less. Since we are using
topological methods, we will not need the exact locations of the vertices. That they are in
general position is sufficient.

A simplicial complex, K, is a collection of simplices with the following properties.

(1) Any two simplices in K either do not intersect at all or their intersection is a face
of both of them.

(2) If a simplex σ ∈ K then all faces of σ also belong to K.

The “dimension” of a complex is the largest dimension of any of the constituent simplices.
The vertices of a complex are just all the vertices of all the simplices in the complex.

In concurrence topology all simplicial complexes will be finite, i.e., consist of only finitely
many simplices. So a finite complex has finite dimension.

2.2. From concurrences to simplicial complex. Suppose one has V variables (in our
case each variable corresponds to a brain region). To each variable associate a point in
space. These points will be the vertices of a simplicial complex. In order to be free to have
simplices spanned by any subset of these points, we need place them in general position,
which means they must sit in a space of dimension at least V − 1.

So for the fMRI data, after dropping the 20% least variable regions (section 12in Ellis
and Klein [EK13]), in order to house a simplicial complex having one vertex per region, we
potentially need 73 dimensional space for whole brain analyses. For the DMN (“Default
Mode Network”, Uddin et al [UKB+09]), 31 dimensional space is needed. Note that
the locations of the points need not have anything to do with the physical locations of
the corresponding regions in the brain. Our interest is functional, not structural (i.e.,
anatomical).

Suppose one has a list, C, of concurrences among the V variables. (See section 3.1
for some discussion of alternative ways of generating concurrence lists.) The “Curto-Itskov
complex” determined from C consists of all the simplices determined as follows. If variables
v0, . . . , vd are concurrent then we join the vertices corresponding to those variables by the
simplex spanned by the vertices corresponding to those variables. That simplex is included
in the complex. (This idea is reminiscent of statistical graphical models, Lauritzen [Lau96].
Apparently, there is no connection.)

This is a well-defined procedure. If variables v0, . . . , vd are concurrent in an observation,
then obviously so is any subset of {v0, . . . , vd}. But the simplex corresponding to the subset
is just a face of the simplex corresponding to variables v0, . . . , vd so it is automatically
included in the complex, by property 2 of simplicial complexes.

CONCURRENCE TOPOLOGY SOFTWARE 3

In the time domain, an important property of the Curto-Itskov complex is that all
temporal information is lost in its construction. concurrence topology represents each
concurrence as a simplex. If the concurrence were to take place at a different time, it would
still appear as the same simplex in the complex. In the Fourier domain time dependence is
preserved, but angular frequency information is lost: A collection of regions is concurrent
in the Fourier domain if their fMRI BOLD time series all have power at the same angular
frequency. It does not matter what that angular frequency is.

3. Polytope

The Curto-Itskov complex is annotated with “points of interest” and boundaries between
simplices. A simplicial complex is not a shape. It is a collection of shapes. However, a
complex clearly determines a shape, which is created by assembling all the constituent
simplices together in space and ignoring their identities as individual simplices. That
shape is called the “polytope” of the simplex. This is illustrated by figure 1. A shape that
is the polytope of some simplicial complex is called a “polyhedron”. (A polyhedron will
actually be the polytope of infinitely many different simplicial complexes.) In concurrence
homology, the version of concurrence topology that is the focus of the paper, we analyze
the holes in the polytopes.

Going from complex to polytope discards information. Replacement of a simplicial com-
plex by its polytope loses information. E.g., from figure 1(2) we cannot tell how the shape
is divided up into 2-simplices in figure 1(1). Moreover, we describe the polytope topolog-
ically, which also sheds information. E.g., in figure 1(2) one hole is triangular, the other
rectangular. Topology cannot make that distinction. (However, in “localization”, section 6,
we resurrect that distinction.) One consequence of this approach is the following principle.

(1) An indirect connection is as good as a direct connection.

It is because of this principle that single linkage cluster analysis is the appropriate agglom-
erative cluster analysis analogue of concurrence homology in dimension 0. Concurrence
topology is predicated on the hope that the information that remains in the topology of
the polytope is still helpful.

(Actually, the simplicial complex structure is used in computing homology. But the
results of the homology calculation are the same for all simplicial complexes having the
same polytope. In that sense the homology depends only on the polytope.)

Principle (1) is a little disturbing. Certainly we wish to distinguish between a case in
which regions A and D are frequently active at the same time from one in which, say, A and
B are frequently active at the same time, B and C are frequently active at the same time,
and C and D are frequently active at the same time. Homology erases that distinction.

However, the flip side of this actually furthers our aims: If a group of regions are not
even indirectly connected, then unambiguously they are weakly connected. I.e., (1) serves
as a noise reduction technique in finding weak connectivity. Assume that communication
among brain regions causes simultaneously elevated fMRI BOLD levels in the regions.
Then if a group of regions is not even indirectly functionally connected, then even indirect
communication among the regions must be weak.

4 STEVEN P. ELLIS

m n o p

i j k l

e f g h

a b c d

(hole)

(hole)

(1) (2)

Figure 1. (1) A two-dimensional simplicial complex with two 1-
dimensional holes (in white). (2) The polytope of the complex in (1).

3.1. Filtering. If a concurrence never appears then the corresponding simplex is not
present in the Curto-Itskov complex. If a concurrence appears the simplex is present,
but the simplex can only be present once in the complex whether the concurrence appears
one time or 20 times.

For the purposes of capturing connectivity, this is a serious limitation of the Curto-Itskov
complex. The Curto-Itskov complex is dichotomous in the sense that either a simplex is in
the complex or it is not. Association among variables, on the other hand, is quantitative.
The more frequently a concurrence appears in binary multivariate data, the stronger is the
association or connectivity among the variables.

In order to capture frequency information geometrically, we “filter” the concurrences
by frequency and construct a series of lists, each one containing the next. The result is
a “filtered concurrence list”. A concurrence is a collection of binary variables (regions, in
dichotomized fMRI data). To filter, one begins with a list, C, of concurrences. A single
concurrence may be present multiple times in the list, but to translate C into a complex,
K, as in section 2.2, one ignores multiplicity.

CONCURRENCE TOPOLOGY SOFTWARE 5

Define a “basic” concurrence in a single multivariate “0–1” observation to be the group
of all variables that are “1” in that observation, if there are any. Thus, if R is a basic
concurrence in an observation (so R consists of variables) then any variable not in R must
be “0” in that observation. A concurrence that only appears as a proper subset of a basic
concurrence is not basic.

Let R be a basic concurrence in C. Define the number of “appearances” of R in C to be
the number of concurrences R′ in the list such that R ⊂ R′. Thus, in general R “appears”
more often than it is actually listed in C, but it has to be present at least once (as a basic
concurrence).

The first step in constructing a filtration from a list C is to produce a “filtered concurrence
list,” C1 ⊇ C2 ⊇ · · · ⊇ CF , where each Ci (i = 1, . . . , F) is a concurrence list. The first
concurrence list in the series, C1, corresponding to frequency level 1, consists of all basic
concurrences. Such concurrences appear at least once. Thus, C1 = C. The list C2 consists
of all the simplices that correspond to all basic concurrences that appear at least twice.
Clearly, C2 ⊂ C1. Etc. Ck consists of all concurrences that appear at least k times. (For the
data discussed in the paper every subject had the same number, viz. 192, time points. This
makes permissible to use absolute frequencies, i.e., counts, as index. Otherwise, relative
frequencies need to be used.)

Given a filtered concurrence list, C1 ⊇ C2 ⊇ · · · ⊇ CF , to construct from it a filtered
simplicial complex, one just translates each Ci into a simplicial complex, Ki, as in section
2.2 (i = 1, . . . , F). This results in a filtered complex K1 ⊇ K2 ⊇ · · · ⊇ KF . NOTE: We
index filtered complexes in the manner opposite to the conventional one (Edelsbrunner and
Harer [EH10, pp. 70 and 151]) because that seems more natural in concurrence topology.

By beginning with different lists C one gets different filtrations. Define a “degree 1”
filtration to be one obtained by taking the initial concurrence list, C, to consist of only
basic concurrences. Suppose one includes in C not just basic concurrences, but also all
pairwise intersections of basic concurrences. From this C one obtains a “degree 2” filtration.
Including as well all intersections of triples of basic concurrences, leads to a “degree 3”
filtration, etc. We just use degree 1 filtrations.

An attractive idea is to combine filtering by frequency with varying dichotomization
cutoffs (section 12in Ellis and Klein [EK13]) to produce a doubly indexed filtration. We
did not attempt this, which in any case appears to be hard to work with (Carlsson et al
[CSZ09]).

3.2. Relationship between filtered complex and contingency table. Here we show
that the filtered Curto-Itskov complex together with the number of observations (number
of time points, in the fMRI example) contains all the information in the contingency table
of the data. And vice versa.

Let V be the number of variables (regions). Concurrences correspond to cells of the
multiway contingency table, T . T can be regarded as an nonnegative integer valued func-
tion on the set of 2V strings of length V consisting of “0”’s and “1”’s. Call such a string
a “cell”. Denote by 0 the cell that consists of all “0”’s. Any cell, c, except 0 corresponds

6 STEVEN P. ELLIS

to a concurrence (In practice, except when V is small, the table will be extremely sparse.
I.e., T (c) = 0 for all but a tiny fraction of cells, c.)

Consider a filtered Curto-Itskov complex, K, with frames

Kf1 ⊇ Kf2 ⊇ . . . ⊇ KfF ,

where 0 < f1 < f2 < · · · < fF . The fi’s might be absolute (i.e., counts) or relative
frequencies. In this section frequencies will be absolute, but in the next section they will
be relative. Suppose K was formed from a “degree 1” filtered concurrence list as in section
3.1.

We show how to compute the contingency table, T , from K and the number, N , of
observations (time points, in fMRI case). Let σ be a simplex belonging to some Kfi . Let
Rσ be the corresponding concurrence and let cσ be the corresponding cell. If Rσ is not
basic (as defined in section 3.1; i.e., Rσ appears merely as a proper subset of another
concurrence), then σ will only appear in K as a proper face of some other simplex. In that
case let fσ := 0 and let T (cσ) = 0.

Suppose Cσ is basic. Then σ is a “facet” in some Kfi , i.e., σ ∈ Kfi , but σ is not a proper
face of any simplex in Kfi . Let fσ be the largest frame index of K in which σ appears.
The simplex σ will be a facet in Kfσ . Define

(2) φσ := fσ −
∑

σ is a proper face of σ′

fσ′ ,

where the sum is taken over all simplices, σ′, in any Kfi , properly containing σ. (Such a
σ′ must belong to Kf with f < fσ.) Note that, since fσ′ = 0 unless σ′ is a facet in some
Kfi , only facets σ′ will contribute nontrivially to the sum in (2). Let T (cσ) = φσ.

Define
φ :=

∑
σ

φσ ≤ N.

Let T (0) = N−φ. The resulting table T will be the contingency table for the dataset from
which K was constructed.

Conversely, we can derive the Curto-Itskov complex from the contingency table. Let
c 6= 0 be a cell, let Rc be the corresponding concurrence, and let σc be the simplex
corresponding to Rc. If T (c) = 0, then Rc will not appear in the data and σc will only be
present in K, if at all, as a proper face of some other simplex. Otherwise, let

f c :=
∑

Rc′⊃Rc
T (c′),

where the sum is taken over all concurrences Rc
′

corresponding to a cell c′ and containing,
not necessarily properly, Rc. Place the simplex σc (and all its faces) in frame f c.

4. Population level

We have presented concurrence homology as a descriptive method. However, it is natural
to ask, what population functional does concurrence homology is estimate? Let X be a
vector of V “0–1” variables. In our fMRI data, each subject has the same number of time

CONCURRENCE TOPOLOGY SOFTWARE 7

points, viz. 192. That gives us the luxury of labeling the frames by absolute frequency of
occurrence. In general, one would label the frames by the relative frequency, which in this
instance means dividing by 192.

Similarly, one could describe the population distribution by a table, T , such that for
every cell c, T (c) = Prob{X = c}. If one applies to T the recipe described in the preceding
section, the result is a filtered complex, K, indexed by probability. The empirical filtered
Curto-Itskov complex, indexed by relative frequency, is an estimate of K. We have made
no attempt to assess how good this estimate is, its sampling variability, or how it might be
improved upon.

5. Homology

Here we briefly and informally describe how homology (with GF (2) = Z/2Z := {0, 1}
coefficients) works (Munkres, [Mun84], Sato [Sat99], Edelsbrunner and Harer [EH10],
Zomorodian [Zom05]). For simplicity, consider 1-dimensional homology of a simplicial
complex K (section 2.1). The homology of K only depends on its polytope, |K|, but the
complex K provides a “scaffolding” that we use to compute the homology of |K|.

Loosely speaking, a “1-cycle” is a union of one or more closed polygons made up of 1-
simplices. Roughly speaking, two 1-cycles z and z′ are “homologous” if the space between
them is completely filled in by 2-simplices in K. The collection of cycles that are homolo-
gous to z, called a “homology class”, is typically large. This homology class is denoted by
[z]. We say that any 1-cycle in [z], e.g., z itself, “represents” [z].

We are interested in the cycles that go around one or more holes in |K|. If z goes
around a hole, then so does any cycle homologous to z. We ignore homology classes that
do not go around holes, so when we refer to a “homology class” we always assume that
its representatives go around a hole. (So by “homology class” we always mean“nontrivial
homology class”.) The “one-dimensional homology group of K”, H1

(
K;GF (2)

)
, is just

the collection of its one-dimensional homology classes.
Figure 1 illustrates. (This complex fits on a plane. In general, a complex with 16 vertices

might not fit in Euclidean space of fewer than 15 dimensions.) We write cycles as formal
sums of 1-simplices. So, e.g., jf + fg + gj and ae+ ei+ im+mj + jg + gd+ dc+ cb+ ba
are homologous cycles that go around the hole in the middle of the complex. The cycle
jn+ nk + kh+ hg + gj does not go around a hole, so we ignore it.

We described homology in dimension 1, but one can describe Hd

(
K;GF (2)

)
in a similar

fashion for any dimension d = 1, 2, (H0

(
K;GF (2)

)
is a little different.) In our set

up, Hd

(
K;GF (2)

)
is just a vector space. The dimension of this vector space (not to be

confused with the dimension d) is the Betti number βd. Since we only consider finite
complexes K all Betti numbers will be finite. In fact, only finitely many of them will be
nonzero.

5.1. Euler characteristic. For d = 0, 1, 2, . . . the dth Betti number, βd, of a shape, X,
describes the pattern of d-dimensional holes in X. For example a (hollow) 2-dimensional
sphere with k holes in it has β1 = k − 1. Another example, which is just the first example
in disguise, is as follows. If X is a (2-dimensional) disk with k holes, then β1 = k. If

8 STEVEN P. ELLIS

dimX = D <∞ (this is the case for all shapes considered in concurrence topology), then
βd = 0 if d > D.

Let d = 1, 2, A d-dimensional hole is enclosed by d-dimensional simplices. If βd−1 is
large, i.e., if there are many holes in K of dimension d−1, that might cut into K’s supply of
d-dimensional simplices, making it harder for d-dimensional holes to form, thereby reducing
βd. Hence, as a measure of (weak or negative) order d+ 2 dependence, βd is influenced by
lower order dependence.

A similar phenomenon occurs in linear and log linear models and to get around this
interactions are often defined as sums of marginal means that alternate in sign according to
the dimension of the margin (Scheffé [Sch59, Table 4.6.1, p. 125], Agresti [Agr90, Section
5.3.1, p. 143]). This suggests that the alternating sum β0 − β1 + β2 − β3 + · · · might
be a useful single number summary of dependence. In fact, using a different version of
homology (integer coefficients; we use GF (2) coefficients), this alternating sum is just the
Euler characteristic, χ(K) (Munkres, [Mun84, p. 124], Richeson [Ric08]). There is an
algorithm for computing χ(K) that is usually quite fast (section 7.2).

5.2. Persistence. Suppose K1 ⊃ K2 ⊃ · · · ⊃ KN is a filtered simplicial complex. If z is
a 1-cycle in Kj then z is also a 1-cycle in Kj−1. But if z surrounds a hole in Kj it might
not do so in Kj−1 because Kj−1 might include one or more 2-simplicies, not already in
Kj , that fill in the hole that z surrounds. Thus, z might not represent a homology class in
Kj−1. In this case we say the homology class represented by z in Kj “dies” in Kj−1. If,
on the other hand, z still surrounds a hole in Kj−1 then the homology class [z] ∈ Hd

(
Kj

)
“persists” in Hd

(
Kj−1

)
. The class may die in some lower level of the filtration or it may

never die. I.e., z may still surround a hole in K1.
Conversely, the appearance of some simplices in Kj−1 not already present in Kj might

create a hole in Kj−1 that is not present in Kj . This will give rise to a new homology
class. In that case, we say that a new homology class is “born” in Kj−1. By a “persis-
tent homology class” we mean the collection of homology classes in various frames that
are related to each other as described above. Identifying the births and deaths of the ho-
mology classes in the various Kj ’s is “persistent homology” (e.g., Edelsbrunner and Harer
[EH10], Zomorodian [Zom05]). Plotting death vs. birth yields a “persistence plot” for each
dimension d.

6. Localization

Having found a hole (i.e., homology class), it is natural to ask what variables (regions, in
our case) are involved? Existence of a hole in the filtered complex requires the cooperation
of all variables, but some variables are more directly involved than others. We saw that
in the complex portrayed in figure 1(1), the cycles z1 := jf + fg + gj and z2 := ae+ ei+
im + mj + jg + gd + dc + cb + ba represent the same homology class in H1

(
K;GF (2)

)
.

Both cycles wrap around the triangular hole in the middle of the drawing. However, while
z2 only loosely wraps around the hole, the cycle z1, hugs the hole tightly. It is natural to
regard the cycle z1 as the “location” of the hole.

CONCURRENCE TOPOLOGY SOFTWARE 9

Let K be a simplicial complex. Call a cycle representing a class in Hd

(
K;GF (2)

)
(d = 1, 2, . . .) a “short cycle” if it includes only d + 2 d-dimensional simplices. Note that
d + 2 is the smallest number of d-dimensional simplices that can form a d-cycle. Thus,
jf + fg + gj is a short cycle.

Not all homology classes are represented by short cycles. The hole in the lower right
hand corner of figure 1(1) cannot be represented by the sum of three 1-simplices because
it has four sides.

For a given dimension d > 0, we used an algorithm (section 7.6) that finds all short
d-cycles that represent any homology class at any frequency level. Chen [CF08] and Dey
et al [DHK08] concern themselves with a different problem, viz., finding one short, or
otherwise optimal, representative cycle for one or, perhaps, each homology class in a basis.

7. Homology algorithms

Partly as an exercise to learn more about computational homology, we wrote our own
computational homology software. Other software for computing persistent homology in-
clude the Dionysus (http://mrzv.org/software/dionysus), the Perseus Software Project
(www.math.rutgers.edu/ vidit/perseus.html), and CHomP (http://chomp.rutgers.edu/).
We implemented the algorithms described below in R (R Development Core Team [R D08]).

The computations described below can be rather expensive in terms of computing time.
The distribution of running times required for the subjects in our fMRI dataset has a very
long right tail. Using our software, the per subject running times varied from less than an
hour to as long as 10 days! We expect that if at least some of our code were written in a
compiled language the result would be a substantial increase in speed.

7.1. Filtered complex. References on homology include Munkres [Mun84], Edelsbrunner
and Harer [EH10], and Kaczynski et al [KMM04]. Persistent homology describes the
relationship among the homology of a filtered complex

(3) K1 ⊇ K2 ⊇ · · · ⊇ Kn = K.

Here K1,Kn and K are simplicial complexes. Call the Ki’s “frames”. The sequence (3)
gives rise to a corresponding sequence of homology homomorphisms. (In our software we
use GF (2) coefficients.) Persistence has to do with the images of homology classes under
the homomorphisms induced by the inclusion maps.
“Boiling down:” The main obstacle to computing persistent homology is a “combinatorial
explosion”. This manifests itself in the fact that a high dimensional complex contains very
many simplices. To shed some simplices we employ a step analogous to an “elementary
collapse” (Kaczynski et al [KMM04, Definition 2.64, p. 71], Edelsbrunner and Harer [EH10,
p. 72],). Care must be used in boiling down because we want the boiled down complexes
to continue to be nested as in (3).

7.2. Euler characteristic. Suppose A and B are two subcomplexes of a complex K.
Then

(4) χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B),

10 STEVEN P. ELLIS

where χ(A) is the Euler characteristic of A, etc. (See section 5.1.) Equation (4) plus the
fact that the Euler characteristic of a simplex is 1 form the basis for a recursive algorithm
for computing Euler characteristics. We find that for the complexes we encountered in our
analysis of the fMRI data this recursive algorithm was quite fast.

7.3. Dimension 0. We use non-reduced homology in dimension 0.

7.4. “Excision trick”. The most important feature of our algorithm is what we call the
“excision trick”. This idea was also proposed in Mrozek et al [MPZ08] in the context of
cubical homology (Kaczynski et al [KMM04]). While this trick can always be used, it
works exceedingly well for the fMRI data. The standard method for computing homology
overcomes the combinatorial explosion by brute force. The excision trick reduces the
computational effort by a considerable degree.

The excision trick is based on the simple observation that given a complex K and an
acyclic subcomplex L, the homology of K in positive dimension is isomorphic to that of
the pair (K,L). But the d-dimensional relative chain group, Cd(K,L), of (K,L) has as a
basis all the d-simplices in K \ L. Thus, if most of the simplices in K lie in L, then the
basis of Cd(K,L) will contain fewer simplices (many fewer in our experience) than does
that of the absolute chain group Cd(K).

In order to implement this idea, one has to find an acyclic subcomplex, L. We employ
a greedy algorithm that, using a highest dimensional simplex in K as a “seed”, endeavors
to sweep up additional simplices in decreasing order of dimension to form the acyclic
subcomplex L. A collection of the largest simplices will contain the vast majority of the
simplices in K. This allows one to largely bypass the combinatorial explosion.

A problem is that creating the acyclic subcomplex L can itself sometimes be very time
consuming. However, this process is controlled by two parameters. One can adjust these
parameters to make the process of assembling L less aggressive and therefore less time
consuming. The price of doing this is that L is smaller and one ends up with more simplices
to examine. For the fMRI data, however, the excision trick allows us to ignore the vast
majority (typically over 90%, often close to 100%) of the simplices.

To use the excision trick for computing persistent homology for a filtered complex as in
(3), one must generate a filtration of pairs:

(5) (K1, L1) ⊇ (K2, L2) ⊇ · · · ⊇ (Kn, Ln).

(Call the pairs (Ki, Li) “frame pairs”.) This means that the excision trick needs to be used
in a coordinated way among the frames to preserve the filtration.

7.5. Persistent homology. Edelsbrunner and Harer [EH10, pp. 152–157] present an al-
gorithm for computing persistent homology. It is unclear how to modify their algorithm
to handle relative homology so that the “excision trick” can be used. In our method we
compute persistent homology in two stages, but we expect that our method is reasonably
efficient.

Let F be the number of the maximum frequency level. (For the fMRI data, in the
time domain F was always 39.) Fix a dimension d. For i = 1, . . . , F , let ∂d+1→d;i be

CONCURRENCE TOPOLOGY SOFTWARE 11

the boundary matrix from d + 1 to d in frequency level i. If it is important, we specify
if ∂d+1→d;i is reduced (as in “matrix reduction”, not as in “reduced homology”) or not.
The first step is to compute (relative) homology for each frame pair (Ki, Li) separately.
We use a reduction algorithm (Munkres [Mun84, §11], Edelsbrunner and Harer [EH10,
Section IV.2], Zomorodian [Zom05, Section 7.3.1]) to compute homology for each frame
pair (Ki, Li). Thus, we begin with matrices for the boundary operators. We then perform
a reduction of the columns. We do not reduce the rows because, in the second stage, we will
want, in each dimension, bases for the chain groups that are comparable across the frame
pairs (Ki, Li) in (5). As we perform the reduction we record all the column operations so
we can express each column in the reduced matrix as a sum of simplices.

The second stage proceeds as follows.
Initialize α, ζ, and lifespan to be arbitrary lists of length F ;

For k = 1 to F ;
(*) Set ζk (kth entry in ζ)

= list of representative relative d-cycles for a basis
of Hd

(
Kk, Lk;GF (2)

)
in frequency level k;

Set lifespank to be a vector of 0’s, one for each cycle in ζk;
Set αk to be ∂d+1→d;k (reduced);

End For;
For i = F to 1 (reverse order);

For j = i to 1 (reverse order);
(**) Append columns corresponding to the relative cycles

in ζi to the right side of αj ;
Reduce αj left to right. Replace αj by the reduced matrix;
For each column in αj corresponding to a cycle in ζi

that is not now a 0 column, increment the
corresponding entry in lifespani by 1;

End For;
End For;

Return lifespan and ζ;

Step (*) is performed using matrix reduction. Notice that as the loop over i progresses the
number of columns in any matrix in α is nondecreasing.

In dimension 0 we used non-reduced homology. The relation between absolute 0-
dimensional homology 0-dimensional homology relative to an acyclic subcomplex is simple
in a single complex, but is not so simple in persistent homology. Extra processing is needed
to take into account the connected components containing the acyclic subcomplexes.

7.6. Localization algorithm. To perform localization at frequency level i and dimension
d, we take each d-simplex, σ, in the complement Ki \ Li and, for each variable v not in
σ, form the cycle z := ∂vσ (where vσ is the collection of variables including v and the
variables in σ). Then we check to see if z is an absolute cycle of the complex Ki. This is
done in two steps, first, we check that the d-simplicies in z not in Li form a relative cycle.

12 STEVEN P. ELLIS

This can be done by matrix reduction using ∂d→d−1;i, unreduced. Next, we check to see if
the d-simplicies in z not in Ki \ Li all belong to Li. If both these criteria are met then z
is an absolute cycle of Ki.

However, it is also important to know which homology class z belongs to. This can be
done by matrix reduction as follows. As in step (**) of the persistent homology algorithm,
append columns corresponding to relative cycles repesenting a basis of Hd(Ki, Li) to the
right side of ∂d+1→d;i (reduced). Then on the right hand side of the resulting matrix,
append a column representing z. Call the resulting matrix A. Next, reduce A left to right.
Since z is a cycle, the last column of A, the one representing z, will be reduced to 0. By
tracing the reduction process, one comes up with an expression for the class in Hd(Ki, Li)
to which z belongs.

The fact we can begin with σ ∈ Ki \ Li greatly lessens the number of chains that
need to be checked. Other simple steps also reduce the number of candidate chains. In
our experience, we needed to check at most 10 or 20% of the

(
V
d+2

)
possible chains (V =

number of variables, i.e., regions), nearly always much fewer. At times we availed ourselves
of the fact that this calculation can be run in parallel.

References

[Agr90] Alan Agresti, Categorical data analysis, Wiley, New York, 1990.
[CF08] Chao Chen and Daniel Freedman, Quantifying homology classes, Symposium on Theoretical

Aspects of Computer Science (Bordeaux), 2008, pp. 169–180.
[CSZ09] Gunnar Carlsson, Gurjeet Singh, and Afra Zomorodian, Computing multidimensional persis-

tence, Algorithms and Computation, 20th International Symposium, ISAAC 2009, Honolulu,
Hawaii, USA, December 16-18, 2009. Proceedings (Yingfei Dong, Ding-Zhu Du, and Oscar H.
Ibarra, eds.), Springer, 2009, pp. 730–739.

[DHK08] T. K. Dey, A. Hirani, and B. Krishnamoorthy, Optimal homologous cycles, total unimodularity,
and linear programming, SIAM J. Computing 40 (2008), 1026–1044.

[EH10] Herbert Edelsbrunner and John L. Harer, Computational Topology: An Introduction, American
Mathematical Society, Providence, 2010.

[EK13] Steven P. Ellis and Arno Klein, Describing high-order statistical dependence using ”con-
currence topology”, with application to functional MRI brain data, (posted on arXiv,
http://arxiv.org/abs/1212.1642), 2013.

[KMM04] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek, Computational Homology,
Springer, New York, 2004.

[Lau96] Steffen L. Lauritzen, Graphical Models, Oxford University Press, New York, 1996.

[MPZ08] Marian Mrozek, Pawe lPilarczyk, and Natalia Żelazna, Homology algorithm based on acyclic
subspace, Computers & Mathematics with Applications 55 (2008), no. 11, 2395 – 2412.

[Mun84] J. R. Munkres, Elements of Algebraic Topology, Benjamin/Cummings, Menlo Park, CA, 1984,
Reprinted by Perseus Publishing, Cambridge.

[R D08] R Development Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2008, ISBN 3-900051-07-0.

[Ric08] David S. Richeson, Euler’s Gem: The Polyhedron Formula and the Birth of Topology, Princeton
University Press, Princeton, 2008.

[Sat99] H. Sato, Algebraic Topology: An Intuitive Approach, Translations of Mathematical Monographs,
vol. 183, American Mathematical Society, Providence, RI, 1999.

[Sch59] Henry Scheffé, The Analysis of Variance, Wiley, New York, 1959.

CONCURRENCE TOPOLOGY SOFTWARE 13

[UKB+09] Lucina Q. Uddin, A.M. Clare Kelly, Bharat B. Biswal, F. Xavier Castellanos, and Michael P.
Milham, Functional connectivity of default mode network components: Correlation, anticorrela-
tion, and causality, Human Brain Mapping 30 (2009), 625 – 637.

[Zom05] Afra J. Zomorodian, Topology for Computing, Cambridge Monographs on Applied and Compu-
tational Mathematics, vol. 16, Cambridge, Cambridge, 2005.

Steven P. Ellis, Unit 42, New York State Psychiatric Institute at Columbia University,
1051 Riverside Dr., New York, NY 10032, U.S.A., e-mail: spe4@columbia.edu

